Nitrogen Fixation and Hydrogen Metabolism in Cyanobacteria
نویسندگان
چکیده
منابع مشابه
Nitrogen fixation and hydrogen metabolism in cyanobacteria.
This review summarizes recent aspects of (di)nitrogen fixation and (di)hydrogen metabolism, with emphasis on cyanobacteria. These organisms possess several types of the enzyme complexes catalyzing N(2) fixation and/or H(2) formation or oxidation, namely, two Mo nitrogenases, a V nitrogenase, and two hydrogenases. The two cyanobacterial Ni hydrogenases are differentiated as either uptake or bidi...
متن کاملThe evolution of nitrogen fixation in cyanobacteria
MOTIVATION Fixed nitrogen is an essential requirement for the biosynthesis of cellular nitrogenous compounds. Some cyanobacteria can fix nitrogen, contributing significantly to the nitrogen cycle, agriculture and biogeochemical history of Earth. The rate and position on the species phylogeny of gains and losses of this ability, as well as of the underlying nif genes, are controversial. RESULT...
متن کاملOxygen relations of nitrogen fixation in cyanobacteria.
The enigmatic coexistence of O2-sensitive nitrogenase and O2-evolving photosynthesis in diazotrophic cyanobacteria has fascinated researchers for over two decades. Research efforts in the past 10 years have revealed a range of O2 sensitivity of nitrogenase in different strains of cyanobacteria and a variety of adaptations for the protection of nitrogenase from damage by both atmospheric and pho...
متن کاملNitrogen Fixation, Hydrogen Cycling, and Electron Transport Kinetics in Trichodesmium Erythraeum (cyanobacteria) Strain Ims101(1).
This study describes the relationships between dinitrogen (N2 ) fixation, dihydrogen (H2 ) production, and electron transport associated with photosynthesis and respiration in the marine cyanobacterium Trichodesmium erythraeum Ehrenb. strain IMS101. The ratio of H2 produced:N2 fixed (H2 :N2 ) was controlled by the light intensity and by the light spectral composition and was affected by the gro...
متن کاملNitrogen fixation and photosynthetic oxygen evolution in cyanobacteria.
The biological reduction of N(2) is catalyzed by nitrogenase, which is irreversibly inhibited by molecular oxygen. Cyanobacteria are the only diazotrophs (nitrogen-fixing organisms) that produce oxygen as a by-product of the photosynthetic process, and which must negotiate the inevitable presence of molecular oxygen with an essentially anaerobic enzyme. In this review, we present an analysis of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Microbiology and Molecular Biology Reviews
سال: 2010
ISSN: 1092-2172,1098-5557
DOI: 10.1128/mmbr.00033-10